DOI: 10.1002/chem.200701420

Accelerating and Decelerating Effects of Metal Ions on Electron-Transfer Reduction of Quinones as a Function of Temperature and Binding Modes of Metal Ions to Semiquinone Radical Anions

Junpei Yuasa, Shunsuke Yamada, and Shunichi Fukuzumi*^[a]

Abstract: The accelerating effect of Sc^{3+} on the electron-transfer (ET) reduction of the *p*-benzoquinone derivative 1-(p-tolylsulfinyl)-2,5-benzoquinone (TolSQ) by 10,10'-dimethyl-9,9'biacridine ((AcrH)₂) at 233 K changes to a decelerating effect with increasing reaction temperature; the observed second-order rate constant $k_{\rm et}$ decreases with increasing Sc³⁺ concentration at high concentrations of Sc^{3+} at 298 K. At 263 K the $k_{\rm et}$ value remains constant with increasing Sc^{3+} concentration. Such a remarkable difference with regard to dependence of $k_{\rm et}$ on [Sc³⁺]

Introduction

Activation and deactivation of electron transfer (ET) plays a vital role in controlling biological redox reactions such as photosynthesis and respiration, which are essential for life.^[1,2] Electron-transfer reactions are often regulated and tuned through noncovalent interactions (e.g., hydrogen bonds,^[3–5] interactions in proteins,^[6] electrostatic interactions with metal ions^[7–15]) in many biological and chemical redox systems. In particular, metal ions acting as Lewis acids are known to activate ET reactions when they bind to the product radical anions.^[7–15] Electron-transfer rates are generally

[a] Dr. J. Yuasa, S. Yamada, S. Fukuzumi Department of Material and Life Science Graduate School of Engineering Osaka University and SORST (JST)
2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan) Fax: (+81)6-6879-7370 E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

1866

Supporting information for this article is available on the WWW under http://www.chemistry.org or from the author.

sults from the difference in relative activity of two ET pathways that depend on temperature, one of which affords 1:1 complex TolSQ⁻⁻–Sc³⁺, and the other 1:2 complex TolSQ⁻⁻–(Sc³⁺)₂ with additional binding of Sc³⁺ to TolSQ⁻⁻– Sc³⁺. The formation of TolSQ⁻⁻–Sc³⁺ and TolSQ⁻⁻–(Sc³⁺)₂ complexes was confirmed by EPR spectroscopy in the

between low and high temperatures re-

Keywords: electron transfer • kinetics • quinones • radical ions • reduction ET reduction of ToISQ in the presence of low and high concentrations of Sc^{3+} , respectively. The effects of metal ions on other ET reactions of quinones to afford 1:1 and 1:2 complexes between semiquinone radical anions and metal ions are also reported. The ET pathway affording the 1:2 complexes has smaller activation enthalpies ΔH^{+} and more negative activation entropies ΔS^{+} because of stronger binding of metal ions and more restricted geometries of the ET transition states as compared with the ET pathway to afford the 1:1 complexes.

determined by the enthalpies ΔH^{\dagger} and entropies ΔS^{\dagger} of activation. In adiabatic ET reactions in solution, the ΔS^{\dagger} value is normally close to zero, and ET is enthalpy-controlled.^[16,17] When ET from an electron donor (D) to an electron acceptor (A) is activated by binding of metal ions (M^{n+}) with the product radical anion (A⁻⁻), the ΔS^{\pm} value takes on a large negative value because of restricted geometry in binding of metal ions in the transition state, whereas the ΔH^{\dagger} value becomes smaller because metal-ion binding thermodynamically stabilizes the product radical anion (Scheme 1). If the binding mode of the metal ion complex changes from a 1:1 complex $(A^{-}-M^{n+})$ to a 1:2 complex $(A^{-}-(M^{n+})_2)$ with increasing metal-ion concentration, the ΔH^{\dagger} and ΔS^{\dagger} values would be different for the two binding modes (Scheme 1).^[7-15,18,19] In such a case, the rate of the ET pathway to afford 1:2 complex $A^{-}(M^{n+})_2$ with a smaller ΔH^{+} value and a more negative ΔS^{+} value would be faster than that to afford a 1:1 complex $A^{-}-M^{n+}$ at lower temperature, whereas this would be reversed at higher temperature. This indicates that the ET rate increases with increasing concentration of metal ions at lower temperature, but the ET rate decreases with increasing concentration of metal ions at higher temperature. However, such acceleration and decel-

Scheme 1. Schematic description of metal-ion-promoted ET.

eration effects of metal ions on electron transfer depending on temperature have yet to be scrutinized.

We report herein for the first time the accelerating and decelerating effects of metal ions on the ET reduction of p-1-(p-tolylsulfinyl)-2,5-benzoquinone and o-quinones, (TolSQ) and 9,10-phenanthrenequinone (PQ), by electron donors with different electron-donor abilities ((AcrH)₂, [Ir-(ppy)₃], CoTPP) as a function of temperature. Quinones are known to play a crucial role in biological redox systems.^[20-22] TolSQ and PQ were chosen as electron acceptors, because these quinones have metal-ion binding sites for complexation of metal ions. Typically, Sc^{3+} and Y^{3+} , which act as strong Lewis acids, can form complexes with TolSQ and PQ, respectively.^[23] Hence, we employed Sc3+ and Y3+ to demonstrate the accelerating and decelerating effects of metal ions on ET reduction of quinones.

Chem. Eur. J. 2008, 14, 1866-1874

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 1867

Results and Discussion

Accelerating and decelerating effects of Sc³⁺ on ET from (AcrH), to TolSQ: No electron transfer (ET) from 10,10'-dimethyl-9,9'-biacridine $((AcrH)_2, E_{ox}=0.62 V versus$ SCE)^[24] to 1-(*p*-tolylsulfinyl)-2,5-benzoquinone (TolSQ, $E_{\rm red} = -0.26 \, \rm V$ versus SCE)^[25] occurs in acetonitrile (MeCN) at 298 K, in agreement with the highly positive free-energy change of ET ($\Delta G_{\rm et} = 0.88 \, {\rm eV}$). In the presence of 1.0 M scandium triflate $[Sc(OTf)_3]$ (OTf= OSO₂CF₃), however, the re-

duction potential of TolSQ is

shifted to 0.70 V (versus SCE),^[25] and efficient ET from (AcrH)₂ to TolSQ then occurs to yield 2 equiv of AcrH⁺ [Eq. (1)]. Hereby, initial ET from (AcrH)₂ to TolSQ is followed by facile C–C bond cleavage to give AcrH⁺ and AcrH[•] ($E_{red} = -0.46$ V versus SCE),^[26] which is a much stronger electron donor than (AcrH)₂.^[24] Thus, subsequent ET from AcrH[•] to TolSQ occurs rapidly to yield two equivalents of AcrH⁺ [Eq. (1)].

The ET rate was determined by monitoring the increase in the absorption band due to AcrH⁺ in deaerated MeCN. The rates obeyed pseudo-first-order kinetics in the presence of a large excess of TolSQ and Sc³⁺ relative to the concentration of (AcrH)₂ (see the first-order plots in Figure S1 in the Supporting Information). The dependence of the observed second-order rate constant k_{et} on [Sc³⁺] for ET from (AcrH)₂ to TolSQ at 233 and 298 K is shown in Figure 1 a and b, respectively. The $k_{\rm et}$ value increases with increasing Sc³⁺ concentration and exhibits saturation behavior at low concentrations of Sc^{3+} ([Sc^{3+}] $< 5.0 \times 10^{-3}$ M) at both 233 and 298 K (Figure 1 a and b, respectively). The saturation dependence of k_{et} on [Sc³⁺] is ascribed to 1:1 complex formation between TolSQ and Sc³⁺ (TolSQ-Sc³⁺), which enhances the electron-acceptor ability of TolSQ.^[25] The formation constants K_1 of the TolSQ–Sc³⁺ complex at 298 and 233 K

Figure 1. Dependence of k_{et} on $[Sc^{3+}]$ for ET from $(AcrH)_2 (1.0 \times 10^{-5} \text{ M})$ to TolSQ in the presence of Sc³⁺ in deaerated MeCN at a) 233 K, b) 298 K, and c) 263 K.

were determined from UV/Vis spectral changes of TolSQ in the presence of various concentrations of Sc³⁺ in MeCN as $(2.5\pm0.1)\times10^3 \,\text{m}^{-1}$ and $(9.7\pm0.1)\times10^3 \,\text{m}^{-1}$ at 298 and 233 K, respectively.^[25]

The $k_{\rm et}$ value increases further with increasing [Sc³⁺] at high concentrations of Sc³⁺ ([Sc³⁺] > 5.0 × 10⁻³ M) at 233 K as shown in Figure 1 a. In sharp contrast, the $k_{\rm et}$ value decreases with increasing [Sc³⁺] at high concentrations of Sc³⁺ ([Sc³⁺] > 5.0 × 10⁻³ M) at 298 K (Figure 1 b). On the other hand, the $k_{\rm et}$ value is rather constant irrespective of Sc³⁺ concentration at 263 K (Figure 1 c). The decelerating effect of metal ions Mⁿ⁺ on the rate of ET normally results from complex formation between electron donor and metal ion (D–Mⁿ⁺), which reduces the electron-donor ability and decelerates the ET reaction.^[27] However, it was confirmed that Sc³⁺ has no effect on the oxidation potential of (AcrH)₂.

The accelerating effect of Sc^{3+} on k_{et} in Figure 1 a can be easily explained by two ET pathways to produce the 1:1 complex TolSQ⁻⁻-Sc³⁺ and the 1:2 complex TolSQ⁻⁻-(Sc³⁺)₂ (pathways A and B, respectively, in Scheme 2). No ET from

Scheme 2. ET from electron donors to $TolSQ-Sc^{3+}$ to produce a) $TolSQ^{-}-Sc^{3+}$ and b) $TolSQ^{-}-(Sc^{3+})_2$.

 $(AcrH)_2$ to TolSQ occurs without Sc³⁺ (vide supra). In the presence of Sc³⁺, ET becomes possible by 1:1 complex formation between TolSQ and Sc³⁺ (TolSQ–Sc³⁺) to afford the TolSQ⁻⁻–Sc³⁺ complex. With increasing concentration of Sc³⁺, the 1:1 complex TolSQ⁻⁻–Sc³⁺ is further converted to the 1:2 complex TolSQ⁻⁻–(Sc³⁺)₂ (pathway B). In such a case, the ET rate increases with increasing concentration of Sc³⁺, because additional Sc³⁺ is involved in the transition state of ET to afford the 1:2 complex TolSQ⁻⁻–(Sc³⁺)₂.

The dependence of the formation of the 1:1 complex TolSO⁻⁻-Sc³⁺ and the 1:2 complex TolSO⁻⁻-(Sc³⁺)₂ on Sc³⁺ concentration was monitored by EPR spectroscopy in ET from (AcrH)₂ to TolSQ in the presence of low and high concentrations of Sc³⁺ (vide infra).^[25,28] The EPR spectrum of a deaerated MeCN solution of (AcrH)₂ and TolSQ in the presence of a low concentration of Sc^{3+} (4.2×10⁻³ M), shown in Figure 2a, is well reproduced by the simulated spectrum with the hfc values of a(2H) = 1.85, 0.62 G and superhyperfine splitting due to one Sc^{3+} ion ($a(Sc^{3+})=1.63$ G; Figure 2b).^[25,29] This indicates that TolSQ⁻⁻ forms a 1:1 complex with Sc^{3+} (TolSQ⁻⁻-Sc³⁺) in the presence of a low concentration of Sc³⁺. In the presence of a high concentration of $Sc(OTf)_3$ (2.1×10⁻¹ M), the hyperfine pattern changes and exhibits splitting due to the additional Sc³⁺ ion (Figure 2 c).^[25,28] This indicates that the TolSQ⁻⁻Sc³⁺ complex is converted to the 1:2 complex with Sc^{3+} (TolSQ⁻⁻-(Sc³⁺)₂) in the presence of high concentrations of Sc^{3+} .

The activation parameters are expected to differ between pathway A and pathway B, because pathway B to afford TolSQ⁻⁻–(Sc³⁺)₂ may have a smaller activation enthalpy ΔH^{+} and a more negative activation entropy ΔS^{+} due to the second binding of Sc³⁺ with more restricted geometry in the ET transition state as compared to pathway A to afford TolSQ⁻⁻–Sc³⁺. Thus, we examined the temperature dependence of k_{et} at different Sc³⁺ concentrations (1.0×10^{-2} and 5.0×10^{-2} M). At a low concentration of Sc³⁺ (1.0×10^{-2} M) pathway A is dominant, whereas the contribution of the pathway B becomes predominant at a high concentration of Sc³⁺ (5.0×10^{-2} M). The resulting Eyring plots are shown in Figure 3. Nearly all TolSQ molecules form the TolSQ–Sc³⁺ complex in the presence of 5.0×10^{-2} M and 1.0×10^{-2} M of

a) = 2.0048 Sc³⁺ 1.63 G ò Tol 4 G b) 0.62 G H H 1.85 G Ò $\Delta H_{msl} = 0.60 \text{ G}$ = 2.0045 C 3+ 2.01 G C 0.36 G H 4 G -Tol 0.67 G H 1.54 G d) Śc 0.54 G $\Delta H_{msl} = 0.25 \text{ G}$

Figure 2. a) EPR spectrum of TolSQ⁻⁻Sc³⁺ produced by ET from (AcrH)₂ (1.6×10^{-2} M) to TolSQ (4.2×10^{-2} M) in the presence of Sc³⁺ (4.2×10^{-3} M) and H₂O (4.6M) in deaerated MeCN at 298 K and b) simulated spectrum. c) EPR spectrum of TolSQ⁻⁻-(Sc³⁺)₂ produced by ET from (AcrH)₂ (1.6×10^{-2} M) to TolSQ (4.3×10^{-2} M) in the presence of Sc³⁺ (2.1×10^{-1} M) and H₂O (2.4M) in deaerated MeCN at 298 K and d) simulated spectrum. The hfc constants determined by computer simulation with ΔH_{msl} (maximum slope line width) are shown together with the structures of TolSQ⁻⁻Sc³⁺ and TolSQ⁻⁻(Sc³⁺)₂.

Figure 3. Plots of $\ln (k_{el}T^{-1})$ versus T^{-1} for ET from $(AcrH)_2 (1.0 \times 10^{-5} \text{ M})$ to TolSQ in the presence of Sc(OTf)₃ $(1.0 \times 10^{-2} \text{ M})$: open circles, $5.0 \times 10^{-2} \text{ M}$: filled circles) in deaerated MeCN.

Sc³⁺ at 233–328 K judging from the large K_1 values at 298 and 233 K (vide supra). The activation enthalpies ΔH^{\pm} and entropies ΔS^{\pm} were determined from the slopes and the intercepts of the Eyring plots for ET as $\Delta H^{\pm} = (11.6 \pm 0.4)$ kcal mol⁻¹ and $\Delta S^{\pm} = (3.2 \pm 1.5)$ calmol⁻¹K⁻¹ at low Sc³⁺ concentration $(1.0 \times 10^{-2} \text{ m})$, and $\Delta H^{\pm} = (8.3 \pm 0.3)$ kcalmol⁻¹ and $\Delta S^{\pm} = (-9.4 \pm 1.1)$ calmol⁻¹K⁻¹ at high Sc³⁺ concentration $(5.0 \times 10^{-2} \text{ m})$. The larger ΔH^{\pm} value and positive ΔS^{\pm} value at low Sc³⁺ concentration $(1.0 \times 10^{-2} \text{ m})$ corresponds to pathway A. At a high concentration of Sc^{3+} (5.0×10^{-2} M), the contribution of pathway B becomes predominant with a smaller ΔH^{\pm} value and a more negative ΔS^{\pm} value because of the second binding of Sc^{3+} to $TolSQ^{-}-Sc^{3+}$ to give $TolSQ^{-}-(Sc^{3+})_2$ (pathway B), which results in stronger binding and a higher degree of organization as compared with pathway A to afford the 1:1 $TolSQ^{-}-Sc^{3+}$ complex.

The two plots cross at 263 K (Figure 3). In consequence, the $k_{\rm et}$ value increases with increasing Sc³⁺ concentration below 263 K, and decreases with increasing Sc³⁺ concentration above 263 K. At the crossing point, the $k_{\rm et}$ values remain constant with increasing Sc³⁺ concentration (Figure 1 c).

If pathway A is independent of pathway B, k_{et} is given as the sum of the rate constants of pathways A (k_A) and B [k_B -[Sc³⁺], Eq. (2)].

$$k_{\rm et} = k_{\rm A} + k_{\rm B} [\rm Sc^{3+}] \tag{2}$$

In such a case, the k_{et} value would always increase with increasing concentration of Sc^{3+} irrespective of temperature. Thus, the observed decelerating effect of Sc^{3+} on the rate of ET from (AcrH)₂ to the TolSQ–Sc³⁺ complex at 298 K (Figure 1b) indicates that pathway A is not independent of pathway B. Pathway A thereby changes to the pathway B with increasing concentration of Sc^{3+} when k_{et} is given by Equation (3), where K_2 is the formation constant of the 1:2 complex TolSQ⁻-(Sc³⁺)₂.

$$k_{\rm et} = (k_{\rm A} + k_{\rm B}K_2[{\rm Sc}^{3+}]^2) / (1 + K_2[{\rm Sc}^{3+}])$$
(3)

This is quite different from chemical reactions other than electron transfer. Because electron transfer occurs according to the Franck–Condon principle,^[7,30] the ET transition state reflects the binding modes of the products, that is, TolSQ^{+–} Sc³⁺ (pathway A) and TolSQ^{+–}-(Sc³⁺)₂ (pathway B).^[31]

When $K_2[Sc^{3+}] \ge 1$, that is, pathway B is predominant over pathway A, Equation (3) reduces to Equation (4).

$$k_{\rm et} = k_{\rm A} K_2^{-1} [{\rm Sc}^{3+}]^{-1} + k_{\rm B} [{\rm Sc}^{3+}]$$
(4)

The contribution of the second term $k_{\rm B}[{\rm Sc}^{3+}]$ as compared to the first term $k_{\rm A}K_2^{-1}[{\rm Sc}^{3+}]^{-1}$ will decrease with increasing temperature, because of the smaller ΔH^{\pm} value and the more negative ΔS^{\pm} value for pathway B (vide supra). In such a case Equation (4) reduces to Equation (5), which indicates that $k_{\rm et}$ is inversely proportional to concentration of Sc³⁺, as observed in Figure 1 b.

$$k_{\rm et} = k_{\rm A} K_2^{-1} [{\rm Sc}^{3+}]^{-1} \tag{5}$$

Accelerating effect of Sc^{3+} on ET reduction of TolSQ and decelerating effect of Y^{3+} on ET reduction of PQ: Accelerating and decelerating effects of metal ions on the ET reduction of TolSQ may vary depending on the one-electron oxidation potentials of electron donors. Thus, we examined accelerating and decelerating effects of Sc^{3+} on the ET reduc-

www.chemeurj.org

FULL PAPER

tion of TolSQ by different electron donors with different one-electron oxidation potentials (vide infra).

When cobalt(II) tetraphenylporphyrin (CoTPP, $E_{ox} = 0.35 \text{ V}$ versus SCE)^[32] is employed as electron donor instead of (AcrH)₂ ($E_{ox} = 0.62 \text{ V}$ versus SCE),^[24] efficient ET from CoTPP to TolSQ ($E_{red} = -0.26 \text{ V}$ versus SCE)^[25] also occurs in the presence of Sc³⁺ [Eq. (6)], whereas no ET occurs in the absence of Sc³⁺ due to a positive free-energy change ($\Delta G_{et} = 0.61 \text{ eV}$).^[33]

$$CoTPP + TolSQ \xrightarrow{Sc^{3+}} [Co(TPP)]^{+} + TolSQ^{-} - (Sc^{3+})_{n}$$

$$(n = 1, 2)$$
(6)

The $k_{\rm et}$ value exhibits saturation behavior with respect to the concentration of Sc³⁺ at low concentrations of Sc³⁺ ([Sc³⁺] < 5.0×10⁻³ M) because of formation of the 1:1 complex of TolSQ with Sc³⁺ (TolSQ–Sc³⁺), as seen in the case of ET from (AcrH)₂ (Figure 1). In contrast to the decelerating effect of Sc³⁺ on ET from (AcrH)₂ to TolSQ at 298 K (Figure 1 b), the $k_{\rm et}$ value increases with increasing [Sc³⁺] at high concentrations of Sc³⁺ even at 298 K (Figure 4a). This indicates no changeover from an accelerating effect of Sc³⁺ to a decelerating effect below 298 K. Such a promoting effect of Sc³⁺ on ET has also been previously observed in ET from tris(2-phenylpyridine)iridium(III) [Ir(ppy)₃] to TolSQ,^[25] which is shown in Figure 4b for comparison. The accelerating effect of Sc^{3+} on the ET reduction of TolSQ by CoTPP and Ir(ppy)₃ indicates a predominant contribution of the $k_B[Sc^{3+}]$ term in Equation (4) at 298 K.

We also examined the effect of Y^{3+} on the rate of ET from CoTPP ($E_{ox}=0.35$ V versus SCE)^[32] to 9,10-phenanthrenequinone (PQ, $E_{red}=-0.65$ V versus SCE),^[12b] because PQ also forms a 1:1 complex with Y^{3+} (PQ- Y^{3+}), like the case of TolSQ-Sc³⁺.^[34] No ET from CoTPP to PQ occurs in the absence of Y^{3+} , because the free energy change of ET is highly positive ($\Delta G_{et}=1.00$ eV). When PQ forms a 1:1 complex with Y^{3+} (PQ- Y^{3+}) and thus enhances the electron-acceptor ability of PQ, ET becomes possible [Eq. (7)].^[12b,35]

$$\operatorname{CoTPP} + \operatorname{PQ} \xrightarrow{\mathbf{Y}^{3+}} [\operatorname{Co}(\operatorname{TPP})]^+ + \operatorname{PQ}^{-} - (\mathbf{Y}^{3+})_n \quad (n = 1, 2) \quad (7)$$

Formation of the PQ-Y³⁺ complex was confirmed by UV/ Vis spectral changes of PQ in the presence of various concentrations of Y³⁺ (see Figure S2 in the Supporting Information). In such a case, the second-order rate constant of ET k_{et} increases and exhibits saturation behavior with respect to [Y³⁺] at low concentrations of Y³⁺ ([Y³⁺] < 3.0×10⁻³ M) at 298 and 233 K (Figure 5a and b, respectively). At high concentrations of Y³⁺ ([Y³⁺] > 5.0×10⁻³ M) the k_{et} value decreases with increasing [Y³⁺] at both 298 and 233 K (Figure 5a and b, respectively).^[36] Formation of the 1:1 complex (PQ⁻⁻-Y³⁺) and the 1:2 complex (PQ⁻⁻-(Y³⁺)₂) in dependence on Y³⁺ concentration was also confirmed by EPR.^[12b]

Figure 4. a) Dependence of $k_{\rm et}$ on [Sc³⁺] for ET from CoTPP (5.0× 10⁻⁶ M) to TolSQ in the presence of Sc³⁺ in deaerated MeCN at 298 K. b) Dependence of $k_{\rm et}$ on [Sc³⁺] for ET from Ir(ppy)₃ (2.5×10⁻⁵ M) to TolSQ in the presence of Sc³⁺ in deaerated MeCN at 298 K.^[25]

Figure 5. Dependence of $k_{\rm et}$ on $[Y^{3+}]$ for ET from CoTPP $(1.0 \times 10^{-6} \text{ M})$ to PQ in the presence of Y^{3+} in deaerated MeCN at a) 298 K and b) 233 K.

1870

www.chemeurj.org

FULL PAPER

Thus, ET from CoTPP to PQ in the presence of Y^{3+} affords PQ⁻-Y³⁺ (pathway A) and PQ⁻-(Y³⁺)₂ (pathway B) at low and high concentrations of Y³⁺, respectively (Scheme 3). Since Y³⁺ also has no effect on the oxidation potential of CoTPP, the decelerating effect of Y³⁺ on ET from CoTPP to PQ-Y³⁺ in Figure 5 results from the much smaller ET rate on pathway B than that on pathway A at 298 and 233 K.

The temperature dependences of k_{et}^0 (= $k_{et}(1+K[M^{n+}])/K$ -[M^{n+}]) for ET from CoTPP and Ir(ppy)₃ to TolSQ–Sc³⁺ and from CoTPP to PQ–Y³⁺ were also examined at high and low concentrations of metal ions (M^{n+} =Sc³⁺, Y³⁺). The k_{et}^0 correspond to second-order rate constants for ET from electron donors to TolSQ–Sc³⁺ and PQ–Y³⁺, and the k_{et}^0 value is virtually the same as the k_{et} value under conditions such that $1 \ll K[M^{n+}]$.^[37] The resulting Eyring plots at low and high concentrations of metal ions are shown in Figure 6 (open and filled symbols, respectively). In each case no crossing point is found in the temperature range between 233 and 333 K.

The activation parameters ΔH^{\pm} and ΔS^{\pm} of a series of ET reactions are listed in Table 1 together with the $\Delta G_{\rm et}$ values.^[38] Smaller ΔH^{\pm} and more negative ΔS^{\pm} values are

Scheme 3. ET from CoTPP to PQ- Y^{3+} to produce a) PQ⁻- Y^{3+} and b) PQ⁻- $(Y^{3+})_2$.

obtained in the presence of higher concentrations of metal ions than in the presence of lower concentrations of metal ions in each case (Table 1). This results from stronger bindure 7a. In both cases, the ΔH^{\pm} value decreases linearly with increasing $-\Delta G_{\rm et}$, whereby the ΔH^{\pm} value in the presence of a high concentration of Sc³⁺ (filled circles) is smaller

Table 1. One-electron oxidation potentials E_{ox} of electron donors, one-electron reduction potentials E_{red} of electron acceptors in the presence of low and high concentrations of M^{n+} , free energy change ΔG_{et} , activation enthalpies ΔH^{\pm} , and activation entropies ΔS^{\pm} of ET in the presence of low and high concentrations of M^{n+} in deaerated MeCN at 298 K.

No.	Electron donor	Electron acceptor	M^{n+}	$E_{\rm ox}$ [V vs. SCE]	$E_{\rm red}$ [V vs. SCE]		$\Delta G_{\rm et} [{\rm eV}]$		ΔH^* [kcal mol ⁻¹]		$\Delta S^{*} \left[\operatorname{cal} \operatorname{mol}^{-1} \mathrm{K}^{-1} \right]$	
					low conc ^[a]	high conc ^[b]	low conc ^[a]	high conc ^[b]	low conc ^[a]	high conc ^[b]	low conc ^[a]	high conc ^[b]
1 2 3 4	Ir(ppy) ₃ (AcrH) ₂ CoTPP CoTPP	TolSQ TolSQ TolSQ PQ	Sc^{3+} Sc^{3+} Sc^{3+} Y^{3+}	0.71 0.62 0.35 0.35	$\begin{array}{c} 0.61^{[c,d]} \\ 0.61^{[c,d]} \\ 0.61^{[c,d]} \\ 0.40^{[g,h]} \end{array}$	$\begin{array}{c} 0.65^{[d,e]} \\ 0.63^{[d,f]} \\ 0.63^{[d,f]} \\ _^{[i]} \end{array}$	$\begin{array}{c} 0.10^{[c]} \\ 0.01^{[c]} \\ -0.26^{[c]} \\ -0.05^{[h]} \end{array}$	$0.06^{[e]} - 0.01^{[f]} - 0.28^{[f]}$ _[i]	$\begin{array}{c} 12.4\pm0.8^{[c]}\\ 11.6\pm0.4^{[c]}\\ 6.0\pm0.4^{[c]}\\ 8.0\pm0.3^{[h]} \end{array}$	$\begin{array}{c} 9.6 \pm 0.3^{[e]} \\ 8.3 \pm 0.3^{[f]} \\ 3.5 \pm 0.2^{[f]} \\ 7.7 \pm 0.4^{[j]} \end{array}$	$\begin{array}{c} -1.4 \pm 2.8^{[c]} \\ 3.2 \pm 1.5^{[c]} \\ -14.6 \pm 1.2^{[c]} \\ -11.0 \pm 1.1^{[h]} \end{array}$	$\begin{array}{c} -7.8\pm 0.8^{[e]}\\ -9.4\pm 1.1^{[f]}\\ -21.6\pm 1.2^{[f]}\\ -13.8\pm 1.4^{[j]}\end{array}$

[a] Low concentrations of M^{n+} . [b] High concentrations of M^{n+} . [c] Value in the presence of 1.0×10^{-2} M of Sc³⁺. [d] Determined from the equation $E_{red} = -0.26 \pm 0.059 \log \{K_a(1+K_2[Sc^{3+}])/K_1\}$, where K_a is the formation constant of ToISQ⁻⁻Sc³⁺, and K_1 and K_2 are formation constants of ToISQ-Sc³⁺ and ToISQ⁻⁻(Sc³⁺)₂, respectively; the K_a and K_2 values were taken as 1.3×10^{18} and $38 M^{-1}$, respectively, from ref. [25]. [e] Value in the presence of 1.0×10^{-2} M of Sc³⁺. [f] Value in the presence of 5.0×10^{-2} M of Sc³⁺. [g] Taken from ref. [12b]. [h] Value in the presence of 2.0×10^{-2} M of Y³⁺. [i] Not determined. [j] Value in the presence of 1.0×10^{-1} M of Y³⁺.

Chem. Eur. J. 2008, 14, 1866-1874

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 1871

Figure 6. Plots of $\ln(k_{et}^0 T^{-1})$ versus T^{-1} for a) ET from $Ir(ppy)_3$ (2.5× 10^{-5} M) to TolSQ in the presence of Sc³⁺ [1.0×10^{-2} M (open circles) and 1.0×10^{-1} M (filled circles)], b) ET from CoTPP (5.0×10^{-6} M) to TolSQ in the presence of Sc³⁺ [1.0×10^{-2} M (open triangles) and 5.0×10^{-2} M (filled triangles)], and c) ET from CoTPP (1.0×10^{-6} M) to PQ in the presence of Y³⁺ [2.0×10^{-2} M (open squares) and 1.0×10^{-1} M (filled squares)] in deaerated MeCN.

ing of metal ions and more restricted geometries in the ET transition states to afford the 1:2 complexes $TolSQ^{-}-(Sc^{3+})_2$ and $PQ^{-}-(Y^{3+})_2$ between radical anions and metal ions as compared with those to afford the 1:1 complexes $TolSQ^{-}-Sc^{3+}$ and $PQ^{-}-Y^{3+}$.

The ΔH^{\pm} values of the ET reduction of TolSQ at low and high concentrations of Sc³⁺ are plotted against the ET driving force $-\Delta G_{\rm et}$ in Fig-

Figure 7. Plots of a) ΔH^{+} and b) ΔS^{+} versus $-\Delta G_{\rm et}$ for ET from electron donors (Ir(ppy)₃, (AcrH)₂, and CoTPP) to TolSQ in the presence of low $(1.0 \times 10^{-2}$ M, open circles) and high $(5.0 \times 10^{-2}$ M or 1.0×10^{-1} M, filled circles) concentrations of Sc³⁺. Numbers correspond to those given in Table 1.

than that in the presence of a lower concentration of Sc^{3+} (open circles) irrespective of the $-\Delta G_{\text{et}}$ value. In contrast, the relation between ΔS^{+} and $-\Delta G_{\text{et}}$ (Figure 7b) is not so simple as the linear correlation between ΔH^{+} and $-\Delta G_{\text{et}}$ (Figure 7a), because the transition-state geometry may be different depending on the type of electron donors. The difference in the ΔS^{+} values between pathways A and B is the largest for the case of $(\text{AcrH})_2$ (no. 2 in Figure 7b). This is the reason why a crossing point occurs at 263 K in Eyring plots (Figure 3). In the other cases, the extrapolated crossing temperature is too high or too low to be observed in the limited range of temperature (233–333 K) in Figure 6.

In the case of ET from CoTPP to PQ in the presence of Y^{3+} , the ΔH^{\pm} value of pathway B $(7.7\pm0.4 \text{ kcal mol}^{-1})$ is only slightly smaller than that of pathway A $(8.0\pm0.3 \text{ kcal mol}^{-1})$; Table 1). Such a slight difference in the ΔH^{\pm} value between pathways A and B may result from the binding modes of PQ⁻⁻-Y³⁺ and PQ⁻⁻-(Y³⁺)₂ (vide infra). The second binding of Y³⁺ to PQ⁻⁻-(Y³⁺)₂ to form (Scheme 3), which results in weaker second binding than that of Sc³⁺ to TolSQ⁻⁻-Sc³⁺ to afford TolSQ⁻⁻-(Sc³⁺)₂. Such a weak second binding of Y³⁺ reflects a subtle difference in the binding enthalpy between PQ⁻⁻-Y³⁺ and PQ⁻⁻-(Y³⁺)₂ in relation to the difference in ΔH^{\pm} values between pathways A and B (Scheme 3).

Conclusions

We have demonstrated the accelerating and decelerating effects of metal ions on the ET reduction of quinones as a function of temperature in relation to binding modes of metal ions to semiquinone radical anions. The quinone derivatives TolSQ and PQ employed as electron acceptors form 1:1 complexes with Sc3+ and Y3+ (TolSQ-Sc3+ and PQ-Y³⁺, respectively). Formation of TolSQ-Sc³⁺ and PQ-Y³⁺ complexes enables efficient ET reduction of TolSQ and PQ by electron donors such as CoTPP. The resulting ET products TolSQ⁻⁻-Sc³⁺ and PQ⁻⁻-Y³⁺ are converted to the 1:2 complexes $TolSQ^{-}-(Sc^{3+})_2$ and $PQ^{-}-(Y^{3+})_2$ at higher concentrations of metal ions. The conversion of TolSQ'-- Sc^{3+} to $TolSQ^{-}-(Sc^{3+})_2$ with increasing Sc^{3+} concentration has been successfully observed by EPR. The ET pathway B to afford the 1:2 complexes has smaller activation enthalpies ΔH^{\dagger} and more negative activation entropies ΔS^{\dagger} because of stronger binding of metal ions and more restricted geometries of the ET transition states as compared to ET pathway A to afford the 1:1 complexes. Such differences in the ΔH^{\dagger} and ΔS^{\dagger} values generally result in crossing of the Eyring plots of ET pathways A and B. In the case of ET from $(AcrH)_2$ to the TolSQ-Sc³⁺ complex, crossing of the two Eyring plots is experimentally observed at 263 K. At the lower temperature, the ET rate increases with increasing concentration of Sc^{3+} , whereas at the higher temperature this is reversed, that is, the ET rate decreases with increasing concentration of Sc³⁺. At 263 K, the ET rate remains constant with increasing concentration of Sc3+. Thus, it has been shown for the first time that metal ions exhibit both accelerating and decelerating effects on ET, depending on the difference in temperature in relation to the binding modes of metal ions to the ET products (radical anions).

Experimental Section

Materials: 1-(*p*-Tolylsulfinyl)-2,5-benzoquinone (TolSQ),^[39] cobalt(II) tetraphenylporphyrin (CoTPP),^[40] and tris(2-phenylpyridine)iridium [Ir-(ppy)₃]^[41] were prepared according to the literature. 10,10'-Dimethyl-9,9'biacridine ((AcrH)₂) was prepared by one-electron reduction of 10-methylacridinium perchlorate with hexamethylditin.^[42] 9,10-Phenanthrenequinone (PQ) was obtained commercially and purified by the standard methods.^[43] Scandium triflate [Sc(OTf)₃] (99%) was purchased from Pacific Metals Co., Ltd. (Taiheiyo Kinzoku). Yttrium triflate [Y(OTf)₃] was obtained from Acros. Acetonitrile (MeCN) used as solvent was purified and dried by the standard procedure.^[43]

Spectral measurements: Formation of the Y^{3+} complex with PQ (PQ- Y^{3+}) was monitored by means of the change in the UV/Vis spectra of PQ in the presence of various concentrations of Y^{3+} at 233–333 K on a Hewlett Packard 8453 diode array spectrophotometer.

Kinetic measurements: Kinetic measurements were performed by using a Unisoku RSP-601 stopped-flow spectrophotometer with an MOS-type high-sensitivity photodiode array. Rates of ET from CoTPP $(5.0 \times 10^{-6} \text{ M})$ to TolSQ $(5.0 \times 10^{-5} \text{ M})$ in the presence of Sc³⁺ $(0-5.0 \times 10^{-2} \text{ M})$ and ET from CoTPP $(1.0 \times 10^{-6} \text{ M})$ to PQ $(4.0 \times 10^{-5} \text{ M})$ in the presence of Y³⁺ $(0-1.5 \times 10^{-1} \text{ M})$ were monitored by the rise of the absorption band at 434 nm due to CoTPP⁺ in deaerated MeCN at 233–333 K. Rates of ET from (AcrH)₂ $(1.0 \times 10^{-5} \text{ M})$ to TolSQ $(2.0 \times 10^{-4} \text{ M})$ in the presence of Sc³⁺ $(0-1.5 \times 10^{-5} \text{ M})$ in the presence of Sc³⁺ $(0-1.5 \times 10^{-5} \text{ M})$ to TolSQ $(2.0 \times 10^{-4} \text{ M})$ in the presence of Sc³⁺ $(0-1.5 \times 10^{-5} \text{ M})$ to TolSQ $(2.0 \times 10^{-4} \text{ M})$ in the presence of Sc³⁺ $(0-1.5 \times 10^{-5} \text{ M})$ to TolSQ $(2.0 \times 10^{-4} \text{ M})$ in the presence of Sc³⁺ $(0-1.5 \times 10^{-5} \text{ M})$ to TolSQ $(2.0 \times 10^{-4} \text{ M})$ in the presence of Sc³⁺ $(0-1.5 \times 10^{-5} \text{ M$

 1.0×10^{-1} M) were monitored by the increase in the absorption band due to 10-methylacridinium ion (AcrH⁺: $\lambda_{max} = 358$ nm, $\varepsilon_{max} = 1.80 \times 10^4$ M $^{-1}$ cm⁻¹)^[24] in deaerated MeCN at 233–328 K in the dark. Rates of electron transfer from Ir(ppy)₃ (2.5×10^{-5} M) to ToISQ (5.0×10^{-4} M) in the presence of Sc³⁺ ($0-5.0 \times 10^{-2}$ M) were monitored by the rise and decay of the absorption bands at 580 and 380 nm due to [Ir(ppy)₃]⁺ and Ir(ppy)₃, respectively, in deaerated MeCN at 253–328 K.

EPR measurements: EPR spectra of Sc³⁺ complexes of TolSQ⁻⁻ were recorded on a JEOL JES-RE1XE spectrometer in a sample cell in the EPR cavity at 298 K. Typically, TolSQ (8.4×10^{-2} M) was dissolved in deaerated MeCN and purged with argon for 10 min. Sc(OTf)₃ (8.4×10^{-3} M in 1.0 mL) was dissolved in deaerated MeCN. The TolSQ (200 mL) and Sc³⁺ (200 mL) solutions in MeCN were introduced into an EPR cell (1.8 mm i.d.) containing (AcrH)₂ (1.6×10^{-2} M) and mixed by bubbling with Ar gas through a syringe with a long needle. The magnitude of modulation was chosen to optimize the resolution and signal-to-noise ratio of observed spectra under conditions of nonsaturating microwave power. The *g* values and hyperfine coupling constants were calibrated with a Mn²⁺ marker. Computer simulation of the ESR spectra was carried out by using Calleo ESR version 1.2 (Calleo Scientific Publisher) on a personal computer.

Acknowledgements

This work was partially supported by Grants-in-Aid (Nos. 19205019) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

- a) W. Kaim, B. Schwederski, *Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life*, Wiley, New York, **1994**; b) S. Ferguson-Miller, G. T. Babcock, *Chem. Rev.* **1996**, *96*, 2889–2907; c) R. H. Holm, P. Kennepohl, E. I. Solomon, *Chem. Rev.* **1996**, *96*, 2239– 2314.
- [2] a) L. M. Utschig, M. C. Thurnauer, Acc. Chem. Res. 2004, 37, 439–447; b) S. Hermes, O. Bremm, F. Garczarek, V. Derrien, P. Liebisch, P. Loja, P. Sebban, K. Gerwert, M. Haumann, Biochemistry 2006, 45, 353–359.
- [3] a) V. M. Rotello in *Electron Transfer in Chemistry, Vol.* 4 (Ed.: V. Balzani), Wiley-VCH, Weinheim, 2001, pp. 68–87; b) M. Gray, A. O. Cuello, G. Cooke, V. M. Rotello, *J. Am. Chem. Soc.* 2003, *125*, 7882–7888; c) D. J. Duffy, K. Das, S. L. Hsu, J. Penelle, V. M. Rotello, H. D. Stidham, *J. Am. Chem. Soc.* 2002, *124*, 8290–8296.
- [4] a) J. Breton, C. Boullais, J.-R. Burie, E. Nabedryk, C. Mioskowski, Biochemistry 1994, 33, 14378–14386; b) B. A. Diner, D. A. Force, D. W. Randall, R. D. Britt, Biochemistry 1998, 37, 17931–17943; c) H. Ishikita, E.-W. Knapp, J. Am. Chem. Soc. 2004, 126, 8059– 8064.
- [5] a) K. Okamoto, K. Ohkubo, K. M. Kadish, S. Fukuzumi, J. Phys. Chem. A 2004, 108, 10405–10413; b) S. Fukuzumi, Y. Yoshida, K. Okamoto, H. Imahori, Y. Araki, O. Ito, J. Am. Chem. Soc. 2002, 124, 6794–6795; c) S. Fukuzumi, K. Okamoto, Y. Yoshida, H. Imahori, Y. Araki, O. Ito, J. Am. Chem. Soc. 2003, 125, 1007–1013; d) S. Fukuzumi, H. Kitaguchi, T. Suenobu, S. Ogo, Chem. Commun. 2002, 1984–1985; e) K. Okamoto, S. Fukuzumi, J. Phys. Chem. B 2005, 109, 7713–7723; f) J. Yuasa, S. Yamada, S. Fukuzumi, Angew. Chem. 2007, 119, 3623–3625; Angew. Chem. Int. Ed. 2007, 46, 3553–3555.
- [6] a) H. B. Gray, J. R. Winkler, Annu. Rev. Biochem. 1996, 65, 537–561; b) R. Langen, I.-J. Chang, J. P. Germanas, J. H. Richards, J. R. Winkler, H. B. Gray, Science 1995, 268, 1733–1735; c) J. R. Winkler, H. B. Gray, Chem. Rev. 1992, 92, 369–379.
- [7] a) S. Fukuzumi in *Electron Transfer in Chemistry, Vol. 4* (Ed.: V. Balzani), Wiley-VCH, Weinheim, **2001**, pp. 3–67; b) S. Fukuzumi, *Org. Biomol. Chem.* **2003**, *1*, 609–620; c) S. Fukuzumi, *Bull. Chem. Soc. Jpn.* **1997**, *70*, 1–28.

- [8] a) S. Itoh, H. Kawakami, S. Fukuzumi, J. Am. Chem. Soc. 1998, 120, 7271-7277; b) S. Itoh, H. Kawakami, S. Fukuzumi, J. Am. Chem. Soc. 1997, 119, 439-440; c) S. Itoh, H. Kawakami, S. Fukuzumi, Bio-
- chemistry 1998, 37, 6562–6571.
 [9] a) S. Fukuzumi, N. Nishizawa, T. Tanaka, J. Chem. Soc. Perkin Trans. 2 1985, 371–378; b) S. Fukuzumi, T. Okamoto, J. Otera, J. Am. Chem. Soc. 1994, 116, 5503–5504; c) S. Fukuzumi, S. Itoh in Advances in Photochemistry, Vol. 25 (Eds.: D. C. Neckers, D. H. Volman, G. von Bünau), Wiley, New York, 1998, pp. 107–172.
- [10] S. Fukuzumi, J. Yuasa, T. Suenobu, J. Am. Chem. Soc. 2002, 124, 12566–12573.
- [11] S. Fukuzumi, J. Yuasa, T. Miyagawa, T. Suenobu, J. Phys. Chem. A 2005, 109, 3174–3181.
- [12] a) J. Yuasa, T. Suenobu, S. Fukuzumi, J. Am. Chem. Soc. 2003, 125, 12090–12091; b) J. Yuasa, T. Suenobu, S. Fukuzumi, ChemPhys-Chem 2006, 7, 942–954; c) J. Yuasa, T. Suenobu, S. Fukuzumi, J. Phys. Chem. A 2005, 109, 9356–9362; d) K. Okamoto, S. Fukuzumi, J. Am. Chem. Soc. 2003, 125, 12416–12417.
- [13] a) S. Fukuzumi, K. Ohkubo, T. Okamoto, J. Am. Chem. Soc. 2002, 124, 14147–14155; b) S. Fukuzumi, Y. Fujii, T. Suenobu, J. Am. Chem. Soc. 2001, 123, 10191–10199; c) J. Yuasa, T. Suenobu, K. Ohkubo, S. Fukuzumi, Chem. Commun. 2003, 1070–1071; d) K. Okamoto, H. Imahori, S. Fukuzumi, J. Am. Chem. Soc. 2003, 125, 7014–7021.
- [14] S. Fukuzumi, J. Yuasa, N. Satoh, T. Suenobu, J. Am. Chem. Soc. 2004, 126, 7585-7594.
- [15] H. Wu, D. Zhang, L. Su, K. Ohkubo, C. Zhang, S. Yin, L. Mao, Z. Shuai, S. Fukuzumi, D. Zhu, J. Am. Chem. Soc. 2007, 129, 6839–6846.
- [16] a) A. A. Milischuk, D. V. Matyushov, M. D. Newton, *Chem. Phys.* 2006, 324, 172–194; b) P. K. Ghorai, D. V. Matyushov, *J. Phys. Chem. A* 2006, 110, 8857–8863; c) D. V. Matyushov, *Acc. Chem. Res.* 2007, 40, 294–301.
- [17] M. B. Zimmt, D. H. Waldeck, J. Phys. Chem. A 2003, 107, 3580– 3597.
- [18] a) M. Wanner, T. Sixt, K.-W. Klinkhammer, W. Kaim, *Inorg. Chem.* 1999, 38, 2753–2755; b) B. Schwederski, V. Kasack, W. Kaim, E. Roth, J. Jordanov, *Angew. Chem.* 1990, 102, 74–76; *Angew. Chem. Int. Ed. Engl.* 1990, 29, 78–79; c) S. Ernst, P. Hänel, J. Jordanov, W. Kaim, V. Kasack, E. Roth, *J. Am. Chem. Soc.* 1989, 111, 1733–1738; d) S. Ghumaan, B. Sarkar, S. Patra, J. van Slageren, J. Fiedler, W. Kaim, G. K. Lahiri, *Inorg. Chem.* 2005, 44, 3210–3214.
- [19] For X-ray crystallography of contact and separated ion pairs of alkali metal salts of radical anions, see: a) J.-M. Lü, S. V. Rosokha, S. V. Lindeman, I. S. Neretin, J. K. Kochi, J. Am. Chem. Soc. 2005, 127, 1797–1809; b) M. G. Davlieva, J.-M. Lü, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc. 2004, 126, 4557–4565; c) S. V. Rosokha, J.-M. Lü, M. D. Newton, J. K. Kochi, J. Am. Chem. Soc. 2005, 127, 7411–7420; d) J.-M. Lü, S. V. Rosokha, I. S. Neretin, J. K. Kochi, J. Am. Chem. Soc. 2006, 128, 16708–16719.
- [20] The Chemistry of Quinonoid Compounds (Ed.: S. Patai), Wiley, New York, 1974.
- [21] a) Functions of Quinones in Energy Conserving Systems (Ed.: B. I. Trumpower), Academic Press, New York, 1986; b) R. E. Blankenship, Molecular Mechanism of Photosynthesis, Blackwell, Cambridge, 2001.
- [22] a) M. L. Paddock, S. H. Rongey, G. Feher, M. Y. Okamura, *Proc. Natl. Acad. Sci. USA* 1989, *86*, 6602–6606; b) P. Ädelroth, M. L. Paddock, L. B. Sagle, G. Feher, M. Y. Okamura, *Proc. Natl. Acad. Sci. USA* 2000, *97*, 13086–13091.
- [23] Scandium and yttrium ions are known to have relatively strong Lewis acidity. Since rare earth metal ions such as Y³⁺ are known to have similar Lewis acidity, the other lanthanide ions may be generally applicable to the present reaction system: S. Fukuzumi, K. Ohkubo, *Chem. Eur. J.* 2000, *6*, 4532–4535.
- [24] S. Fukuzumi, Y. Tokuda, J. Phys. Chem. 1992, 96, 8409-8413.
- [25] J. Yuasa, S. Yamada, S. Fukuzumi, J. Am. Chem. Soc. 2006, 128, 14938–14948.

www.chemeurj.org

FULL PAPER

CHEMISTRY

A EUROPEAN JOURNAL

- [26] S. Fukuzumi, K. Ohkubo, Y. Tokuda, T. Suenobu, J. Am. Chem. Soc. 2000, 122, 4286–4294.
- [27] S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am. Chem. Soc. 1987, 109, 305–316.
- [28] Higher resolution hyperfine structures of the TolSQ⁻⁻–Sc³⁺ and TolSQ⁻⁻–(Sc³⁺)₂ complexes are observed in the presence of a small amount of water, because self-exchange ET with neutral TolSQ, which results in an increase in the line width, may be slowed down.^[25]
- [29] TolSQ⁻⁻ was produced by photoinduced ET from (AcrH)₂ to TolSQ. The hyperfine splittings due to three protons (a(3 H)=2.00, 2.20, and 3.35 G) and g value (g=2.0057) of TolSQ⁻⁻ are changed by complex formation with Sc³⁺.^[25]
- [30] a) R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155–196;
 b) R. A. Marcus, Angew. Chem. 1993, 105, 1161–1172; Angew. Chem. Int. Ed. Engl. 1993, 32, 1111–1121.
- [31] One might think that the rate-determining step in the presence of a large concentration of Sc³⁺ is ET from (AcrH)₂ to TolSQ-Sc³⁺, followed by the rapid binding of additional Sc³⁺ to TolSQ⁻⁻-Sc³⁺ to afford TolSQ⁻⁻-(Sc³⁺)₂. However, this is certainly not the case for metal-ion-promoted ET reactions, where an additional Sc³⁺ ion is also involved in the rate-determining step.
- [32] S. Fukuzumi, S. Mochizuki, T. Tanaka, *Inorg. Chem.* 1989, 28, 2459– 2465.
- [33] Metal ions have no effect on the oxidation potentials of CoTPP and $[Ir(ppy)_3]$.
- [34] Y^{3+} was chosen instead of Sc³⁺, because no 1:2 complex is formed between PQ⁻ and Sc³⁺ even at a high concentration of Sc³⁺ (8.1× 10⁻¹ M); see ref. [12b].

- [35] In the presence of 2.0×10^{-2} M of Y³⁺, the reduction potential of PQ is shifted to 0.40 V (versus SCE); see ref. [12b].
- [36] In contrast to the case of Y^{3+} , the k_{et} value of ET from CoTPP to PQ in the presence of Sc³⁺ exhibits saturation dependence with respect to Sc³⁺ concentration due to formation of a 1:1 PQ–Sc³⁺ complex; see ref. [12b].
- [37] In contrast to strong complex formation of TolSQ with Sc³⁺, the observed k_{et} values at low concentrations of Y³⁺ are smaller than those of ET from CoTPP to the PQ-Y³⁺ complex because of the smaller K_1 value of the PQ-Y³⁺ complex (e.g. $K=2.0\times10^2 \text{ m}^{-1}$ at 233 K, see Figure S2). Thus, we employed k_{et}^0 {= $k_{\text{et}}(1+K[M^{n+}])/K$ -[Mⁿ⁺]} in the Eyring plots (Figure 6).
- [38] The ET from (AcrH)₂ (E_{ox} =0.62 V versus SCE) to TolSQ in the presence of 1.0×10^{-2} M of Sc³⁺ is still slightly uphill (ΔG_{et} =0.01 eV, Table 1), but the ET equilibrium may lie to the products side under pseudo-first-order conditions when concentrations of TolSQ and Sc³⁺ are maintained at more than ten times that of (AcrH)₂.
- [39] a) H. Grennberg, A. Gogoll, J.-E. Bäckvall, J. Org. Chem. 1991, 56, 5808-5811; b) M. C. Carreño, J. L. García-Ruano, A. Urbano, Tetrahedron Lett. 1989, 30, 4003-4006.
- [40] A. Shirazi, H. M. Goff, Inorg. Chem. 1982, 21, 3420-3425.
- [41] K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, *Inorg. Chem.* **1991**, *30*, 1685–1687.
- [42] S. Fukuzumi, T. Kitano, K. Mochida, J. Am. Chem. Soc. 1990, 112, 3246–3247.
- [43] W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemi*cals, 5th ed., Butterworth Heinemann, Amsterdam, 2003.

Received: September 8, 2007 Published online: December 11, 2007

1874 -